为什么滋骨®BIO-CAL®Plus

安全又有效改善骨骼?

可预防骨质疏松和骨折?

因为滋骨®BIO-CAL® Plus是磷酸钙,

最接近人类骨骼的钙。

我们有57篇文献支持疗效。

我们通过了牛津临床验证。

为什么滋骨®BIO-CAL®Plus
安全又有效改善骨骼?
可预防骨质疏松和骨折?

因为滋骨®BIO-CAL®Plus是磷酸钙,
最接近人类骨骼的钙。
我们有57篇文献支持疗效。
我们通过了牛津临床验证。

滋骨®BIO-CAL®Plus

真的有牛津临床验证?


真的有57篇医学文献支持?

滋骨®BIO-CAL®Plus
真的有牛津临床验证?

真的有57篇医学文献支持?

滋骨®BIO-CAL® Plus是目前市面少有的一款药品级磷酸钙+维生素D3药品,其疗效和安全性都经过多个临床实验验证,并有超过50篇国内外已发表的医学文献支持。

滋骨®BIO-CAL® Plus是目前市面少有的一款药品级磷酸钙+维生素D3药品,其疗效和安全性都经过多个临床实验验证,并有超过50篇国内外已发表的医学文献支持。

以下就是57篇支持滋骨®BIO-CAL® Plus疗效的医学文献:

1. Shapiro, R., & Heaney, R. P. (2003). Co-dependence of calcium and phosphorus for growth and bone development under conditions of varying deficiency. Bone, 32(5), 532-540.

2. Chapuy, M. C., Arlot, M. E., Duboeuf, F., Brun, J., Crouzet, B., Arnaud, S., … & Meunier, P. J. (1992). Vitamin D3 and calcium to prevent hip fractures in elderly women. New England journal of medicine, 327(23), 1637-1642.

3. Dawson-Hughes, B., Mithal, A., Bonjour, J. P., Boonen, S., Burckhardt, P., Fuleihan, G. H., … & Yoshimura, N. (2010). IOF position statement: vitamin D recommendations for older adults. Osteoporosis international, 21(7), 1151-1154.Cano, Antonio, et al. “Calcium in the prevention of postmenopausal osteoporosis: EMAS clinical guide.” Maturitas 107 (2018): 7-12.

4. Chen, P., Li, Z., & Hu, Y. (2016). Prevalence of osteoporosis in China: a meta-analysis and systematic review. BMC public health, 16(1), 1-11.

5. Heaney, R. P. (2004, January). Phosphorus nutrition and the treatment of osteoporosis. In Mayo clinic proceedings (Vol. 79, No. 1, pp. 91-97). Elsevier.

6. Diab, D. L., & Watts, N. B. (2014). Denosumab in osteoporosis. Expert opinion on drug safety, 13(2), 247-253.

7. Wright, N. C., Looker, A. C., Saag, K. G., Curtis, J. R., Delzell, E. S., Randall, S., & Dawson‐Hughes, B. (2014). The recent prevalence of osteoporosis and low bonemassintheUnitedStatesbasedonbonemineraldensityatthefemoralneckorlumbarspine.Journalofboneandmineralresearch,29(11),2520-2526.

8. Heaney, R. P., & Nordin, B. E. C. (2002). Calcium effects on phosphorus absorption: implications for the prevention and co-therapy of osteoporosis. Journal of the American College of Nutrition, 21(3), 239-244.

9. Yao, P., Bennett, D., Mafham, M., Lin, X., Chen, Z., Armitage, J., & Clarke, R. (2019). Vitamin D and calcium for the prevention of fracture: a systematic review and meta-analysis. JAMA network open, 2(12), e1917789-e1917789.

10. Huang, F., Wang, Z., Zhang, J., Du, W., Su, C., Jiang, H., … & Wang, H. (2018). Dietary calcium intake and food sources among Chinese adults in CNTCS. PLoS One, 13(10), e0205045.

11. Amaya-Montoya, M., Duarte-Montero, D., Nieves-Barreto, L. D., Montaño-Rodríguez, A., Betancourt-Villamizar, E. C., Salazar-Ocampo, M. P., & Mendivil, C. O. (2021). 100 YEARS OF VITAMIN D: Dietary intake and main food sources of vitamin D and calcium in Colombian urban adults. Endocrine Connections, 10(12), 1584-1593.

12. Xie, Z., Xia, W., Zhang, Z., Wu, W., Lu, C., Tao, S., … & Liao, E. (2019). Prevalence of vitamin D inadequacy among Chinese postmenopausal women: a nationwide, multicenter, cross-sectional study. Frontiers in endocrinology, 9, 782.

13. Chen, J., Yun, C., He, Y., Piao, J., Yang, L., & Yang, X. (2017). Vitamin D status among the elderly Chinese population: a cross-sectional analysis of the 2010–2013 China national nutrition and health survey (CNNHS). Nutrition journal, 16(1), 1-8.

14. Omotayo, M. O., Dickin, K. L., O‘Brien, K. O., Neufeld, L. M., De Regil, L. M., & Stoltzfus, R. J. (2016). Calcium supplementation to prevent preeclampsia: translating guidelines into practice in low-income countries. Advances in Nutrition, 7(2), 275-278.

15. Sanz-Salvador, L., García-Pérez, M. Á., Tarín, J. J., & Cano, A. (2015). ENDOCRINOLOGY IN PREGNANCY: Bone metabolic changes during pregnancy: a period of vulnerability to osteoporosis and fracture, European Journal of Endocrinology, 172(2), R53-R65.

16. Anderson, A. S. (1984). Constipation during pregnancy: incidence and methods used in its treatment in a group of Cambridgeshire women. Health Visitor, (57), 363-364. 17. Lederle, F. A. (1995). Epidemiology of constipation in elderly patients. Drugs & aging, 6(6), 465-469.

18. Snooks, S. J., Barnes, P. R. H., Swash, M., & Henry, M. M. (1985). Damage to the innervation of the pelvic floor musculature in chronic constipation. Gastroenterology, 89(5), 977-981.

19. KAMM, M. (1994). Bowel dysfunction: a pathogenic factor in uterovaginal prolapse and urinary stress incontinense. Brit. J. Obstet. Gynaecol.,101,147.

20.Johnson,P.,Mount,K.,&Graziano,S.(2014).Functionalboweldisordersinpregnancy:effectonqualityoflife,evaluationandmanagement.ActaObstetriciaetGynecologicaScandinavica,93(9),874-879.

21. Naciu, A. M., Tabacco, G., Bilezikian, J. P., Santonati, A., Bosco, D., Incognito, G. G., … & Palermo, A. (2022). Calcium citrate versus calcium carbonate in the management of chronic hypoparathyroidism: a randomised, double‐blind, crossover clinical trial. Journal of Bone and Mineral Research.

22. Li, K., Wang, X. F., Li, D. Y., Chen, Y. C., Zhao, L. J., Liu, X. G., Guo, Y. F., Shen, J., Lin, X., Deng, J., Zhou, R., & Deng, H. W. (2018). The good, the bad, and the ugly of calcium supplementation: a review of calcium intake on human health. Clinical interventions in aging, 13, 2443–2452.

23. Cullen, G., & O’Donoghue, D. (2007). Constipation and pregnancy. Best Practice & Research Clinical Gastroenterology, 21(5), 807-818.

24. Pitkin, R. M. (1975). Calcium metabolism in pregnancy: A review. American journal of obstetrics and gynecology, 121(5), 724-737.

25.Albertini,F.,Marquant,E.,Reynaud,R.,&Lacroze,V.(2019).Twocasesof fractures in neonates associated with maternofetal vitamin D deficiency. Archives De Pédiatrie, 26(6), 361–364. https://doi.org/10.1016/j.arcped.2019.06.004

26. Zhou, X., Chen, D., Wang, L., Zhao, Y., Wei, L., Chen, Z., & Yang, B. (2020). Low serum calcium: A new, important indicator of COVID-19 patients from mild/moderate to severe/critical. Bioscience Reports, 40(12). https://doi.org/10.1042/bsr20202690

27. Minasi, A., Andreadi, A., Maiorino, A., Giudice, L., De Taddeo, S., D’Ippolito, I., de Guido, I., Laitano, R., Romano, M., Ruotolo, V., Magrini, A., Daniele, N. D., Rogliani, P., Bellia, A., & Lauro, D. (2022). Hypocalcemia is associated with adverse outcomes in patients hospitalized with COVID-19. https://doi.org/10.21203/ rs.3.rs-2028950/v1 t

28. di Filippo, L., Doga, M., Frara, S., & Giustina, A. (2021). Hypocalcemia in COVID-19: Prevalence, clinical significance and therapeutic implications. Reviews in Endocrine and Metabolic Disorders, 23(2), 299–308. https://doi.org/10.1007/s11154-021-09655-z 49. Puca, E., Puca, E., Pipero, P., Kraja, H., & Como, N. (2021). Severe hypocalcaemia in a COVID-19 female patient. Endocrinology, Diabetes & Metabolism Case Reports, 2021. https:// doi.org/10.1530/edm-20-0097

29. Osman, W., Al Fahdi, F., Al Salmi, I., Al Khalili, H., Gokhale, A., & Khamis, F. (2021). Serum calcium and vitamin D levels: Correlation with severity of COVID-19 in hospitalized patients in Royal Hospital, Oman. International Journal of Infectious Diseases, 107, 153–163. https://doi.org/10.1016/j.ijid.2021.04.050

30. van Kempen, T. A., & Deixler, E. (2021). SARS-COV-2: Influence of phosphate and magnesium, moderated by vitamin D, on energy (ATP) metabolism and on severity of covid-19. American Journal of Physiology-Endocrinology and Metabolism, 320(1). https://doi.org/10.1152/ajpendo.00474.2020

31. Wang, R., He, M., & Kang, Y. (2021). Hypophosphatemia at admission is associated with increased mortality in COVID-19 patients. International Journal of General Medicine, Volume 14, 5313–5322. https://doi.org/10.2147/ijgm.s319717

32. Pal, R., Ram, S., Zohmangaihi, D., Biswas, I., Suri, V., Yaddanapudi, L. N., Malhotra, P., Soni, S. L., Puri, G. D., Bhalla, A., & Bhadada, S. K. (2021). High prevalence of hypocalcemia in non-severe COVID-19 patients: A retrospective case-control study. Frontiers in Medicine, 7. https://doi.org/ 10.3389/fmed.2020.590805

33. Yasari, F., Akbarian, M., Abedini, A., & Vasheghani, M. (2022). The role of electrolyte imbalances in predicting the severity of COVID-19 in the hospitalized patients: A cross-sectional study. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-19264-8

34. Pla, B., Silva, M., Arranz, A., & Marazuela, M. (2021). Severe and treatment-resistant hypocalcemia in patient with bilateral COVID-19 pneumonia. Endocrinología, Diabetes y Nutrición (English Ed.), 68(7), 518–519. https://doi.org/10.1016/j.endien.2020.06.011

35. Patidar, B. S., Mukhopadhayay, T., Subramanian, A., Aggarwal, R., Soni, K. D., Nischal, N., Sahoo, D., Surbhi, S., Pandey, R. M., Wig, N., Malhotra, R., & Trikha, A. (2021). The association between hypocalcemia and outcome in covid-19 patients: A retrospective study. https://doi.org/10.21203/rs.3.rs-302159/v1

36. Ibrahim, H. A., Helmy, E., Amin, A., & Mahmoud, D. (2022). Biochemical and anthropometric nutritional assessment in children infected with covid-19: A cross-sectional study. Open Access Macedonian Journal of Medical Sciences, 10(B), 1818–1826. https://doi.org/10.3889/oamjms.2022.9782

37. Cuñat, T., Ojeda, A., & Calvo, A. (2020). Vitamin D deficiency in critically ill patients diagnosed with Covid -19. are we doing enough? A retrospective analysis of 226 patients. https://doi.org/10.21203/rs.3.rs-30390/v1

38. Abbaszadeh, M., Gorgani, F., Javadi Tabrizi, S., Khajavi Rad, N., Zarei Jalalabadi, N., Karimpour Reyhan, S., Najafi, M. T., & Daraei, M. (2022). The prevalence of electrolyte imbalances and their relationship with disease severity in hospitalized COVID-19 patients. Archives of Clinical Infectious Diseases, 17(3). https://doi.org/10.5812/archcid-112190

39. Yang, C., Ma, X., Wu, J., Han, J., Zheng, Z., Duan, H., Liu, Q., Wu, C., Dong, Y., & Dong, L. (2020). Low serum calcium and phosphorus and their clinical performance in detecting COVID‐19 patients. Journal of Medical Virology, 93(3), 1639–1651. https://doi.org/10.1002/jmv.26515

40. Chen, Z., Xiong, H., Li, J. X., Li, H., Tao, F., Yang, Y. T., Wu, B., Tang, W., Teng, J. X., Fu, Q., & Yang, L. (2020). Zhonghua xue ye xue za zhi = Zhonghua xueyexue zazhi, 41(4), 341–343. https://doi.org/10.3760/cma.j.issn.0253-2727.2020.0004

41. Fakhrolmobasheri, M., Vakhshoori, M., Heidarpour, M., Najimi, A., Mozafari, A. M., & Rezvanian, H. (2022). Hypophosphatemia in coronavirus disease 2019 (COVID-19), complications, and considerations: A systematic review. BioMed Research International, 2022, 1–11. https://doi.org/10.1155/2022/1468786

42. Sakyi, S. A., Owusu‐Yeboah, M., Obirikorang, C., Dadzie Ephraim, R. K., Kwarteng, A., Opoku, S., Afranie, B. O., Senu, E., Boateng, A. O., Boakye, D. K., Buckman, T. A., & Amoani, B. (2022). Profiling vitamin D, its mediators and proinflammatory cytokines in rheumatoid arthritis: A case–control study. Immunity, Inflammation and Disease, 10(8). https://doi.org/10.1002/iid3.676 6

43. Cromer, S. J., & Yu, E. W. (2021). Challenges and opportunities for osteoporosis care during the COVID-19 pandemic. The Journal of Clinical Endocrinology & Metabolism. https://doi.org/10.1210/clinem/dgab570

44. van Kempen, T. A., & Deixler, E. (2021). SARS-COV-2: Influence of phosphate and magnesium, moderated by vitamin D, on energy (ATP) metabolism and on severity of covid-19. American Journal of Physiology-Endocrinology and Metabolism, 320(1). https://doi.org/10.1152/ajpendo.00474.2020

45. Lorini, F. L., Di Matteo, M., Gritti, P., Grazioli, L., Benigni, A., Zacchetti, L., Bianchi, I., Fabretti, F., & Longhi, L. (2021). Coagulopathy and covid-19. European Heart Journal Supplements, 23(Supplement_E). https://doi.org/10.1093/eurheartj/suab100

46. Qi, X., Kong, H., Ding, W., Wu, C., Ji, N., Huang, M., Li, T., Wang, X., Wen, J., Wu, W., Wu, M., Huang, C., Li, Y., Liu, Y., & Tang, J. (2021). Abnormal coagulation function of patients with COVID-19 is significantly related to hypocalcemia and severe inflammation. Frontiers in Medicine, 8. https://doi.org/10.3389/fmed.2021.638194

47. Montazersaheb, S., Hosseiniyan Khatibi, S. M., Hejazi, M. S., Tarhriz, V., Farjami, A., Ghasemian Sorbeni, F., Farahzadi, R., & Ghasemnejad, T. (2022). Covid-19 infection: An overview on cytokine storm and related interventions. Virology Journal, 19(1). https://doi.org/10.1186/s12985-022-01814-1

48. Ragab, D., Salah Eldin, H., Taeimah, M., Khattab, R., & Salem, R. (2020). The COVID-19 cytokine storm; what we know so far. Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.01446

49. Cron, R. Q., Caricchio, R., & Chatham, W. W. (2021). Calming the cytokine storm in covid-19. Nature Medicine, 27(10), 1674–1675. https://doi.org/10.1038/s41591-021-01500-9

50. Sinha, P., Matthay, M. A., & Calfee, C. S. (2020). Is a “cytokine storm” relevant to covid-19? JAMA Internal Medicine, 180(9), 1152. https://doi.org/10.1001/jamainternmed.2020.3313

51. Hopkins, M. H., Owen, J., Ahearn, T., Fedirko, V., Flanders, W. D., Jones, D. P., & Bostick, R. M. (2011). Effects of supplemental vitamin D and calcium on biomarkers of inflammation in colorectal adenoma patients: A randomized, controlled clinical trial. Cancer Prevention Research, 4(10), 1645–1654. https://doi.org/10.1158/1940-6207.capr-11-0105

52. Dwaib, H. S., Ajouz, G., AlZaim, I., Rafeh, R., Mroueh, A., Mougharbil, N., Ragi, M. E., Refaat, M., Obeid, O., & El‐Yazbi, A. F. (2021). Phosphorus supplementation mitigates perivascular adipose inflammation–induced cardiovascular consequences in early metabolic impairment. Journal of the American Heart Association, 10(24). https://doi.org/10.1161/jaha.121.023227

53. Mehta, M., Ghani, H., Chua, F., Draper, A., Calmonson, S., Prabhakar, M., Shah, R., Navarra, A., Vaghela, T., Barlow, A., & Vancheeswaran, R. (2021). Retrospective case–Control Study to evaluate hypocalcaemia as a distinguishing feature of COVID-19 compared with other infective pneumonias and its association with disease severity. BMJ Open, 11(12). https://doi.org/10.1136/bmjopen-2021-053810

54. Koek, W. N., Campos-Obando, N., van der Eerden, B. C., de Rijke, Y. B., Ikram, M. A., Uitterlinden, A. G., van Leeuwen, J. P., & Zillikens, M. C. (2021). Age-dependent sex differences in calcium and phosphate homeostasis. Endocrine Connections, 10(3), 273–282. https://doi.org/10.1530/ec-20-0509

55. Bhadarge, G., ZG, B., & Kadam, R. (2020). Study of calcium, phosphorus and acid phosphatase in PRE-AND post-menopausal women. International Journal of Medical and Biomedical Studies, 4(5). https://doi.org/10.32553/ijmbs.v4i5.1114

56. Zhang, H.-J., Qi, G.-Q., Gu, X., Zhang, X.-Y., Fang, Y.-F., Jiang, H., & Zhao, Y.-J. (2021). Lymphocyte blood levels that remain low can predict the death of patients with covid-19. Medicine, 100(28). https://doi.org/10.1097/md.0000000000026503

57. Liu, Y., Tan, W., Chen, H., Zhu, Y., Wan, L., Jiang, K., Guo, Y., Tang, K., Xie, C., Yi, H., Kuang, Y., & Luo, Y. (2021). Dynamic changes in lymphocyte subsets and parallel cytokine levels in patients with severe and critical COVID-19. BMC Infectious Diseases, 21(1). https://doi.org/10.1186/s12879-021-05792-7